	[image: image1.png]



	New Computerized Transit System (NCTS) Economic Operators Specification

	



	
	
	


Economic Operators specification
Version: V1.00
Skopje, 06 June 2012

ATTRIBUTES OF DOCUMENT
Date: 

06. 06. 2012
Version: 
V1.00
Status of document: 

	For Review
	

	For approval
	

	Approved
	X


Change history:
	Version
	Date
	Summary of Change

	V1.00
	06 June, 2012
	Document approved


TABLE OF CONTENTS
41.
INTRODUCTION


42.
OBJECTIVE OF THIS DOCUMENT


43.
TRADERS GUIDE


43.1.
Processes and message sequence


43.2.
Web Service Implementation


43.2.1.
Prerequisite


53.2.2.
Steps to implement a web service consumer


53.2.3.
Description of available functions


6
FUNCTION1 : uploadsignedmessage


8
FUNCTION2 :uploadunsignedmessage


9
FUNCTION3 : downloadmessageanswer


11
FUNCTION4 : downloadmessagebymrn


12
FUNCTION5 : downloadmessagestatus


14
FUNCTION6 : downloadmessagestatusbymrn


15
FUNCTION7 : downloaddocumenttatusbymrn


17
FUNCTION8 : downloadlastdocanswer


194.
ECONOMIC OPERATORS REGISTRATION


205.
ABBREVIATIONS AND ACRONYMS


216.
Annex


216.1.
International Rules, Conditions and Technical Rules


216.2.
National Rules


236.3.
XSDs


236.4.
Business Process Description


246.5.
Web Service Client example


246.6.
Messages description


246.7.
WSDLs





1. INTRODUCTION

The New Computerised Transit System (NCTS) is a European wide system, based upon electronic declaration and processing that was designed to replace the paper based CT system and to provide better management and control of both Community and Common Transit.

In order to connect on-line with Macedonian Transit Application (MTA), traders need the facility to generate electronic Transit messages, and the facility to send/receive these messages. Connected traders to the MTA service receive electronic responses containing the state of declaration submitted - acceptance of declaration, release of goods, notification of discharge etc.

2. OBJECTIVE OF THIS DOCUMENT

This document describes the result of the counselling activities that have been performed and covering the topic of Traders Specification of Macedonian Transit Application (TSMTA).
This document is intended to the following readership:

· Macedonian Custom Administration (MCA);

· Economic Operators;
· Software Developers.

3. TRADERS GUIDE
3.1. Processes and message sequence

For deep study of the processes and information exchange see Annex 7.4 Business Process Description.
3.2. Web Service Implementation
3.2.1. Prerequisite

· Deep knowledge of NCTS message sequences;
· Deep understanding of NCTS messages and data relationships;
· Good understanding of how to develop web services consumer application (see Microsoft .NET development documentation, or JEE documentation).
3.2.2. Steps to implement a web service consumer

· Read “NCTS_TRADER_WS - Explained.wsdl.xml” especially the comments, in order to understand what methods are available, what parameters are used, and what return values are obtained. For reference see Annex 6.7 WSDLs;
· Take the wsdl file “NCTS_TRADER_WS.wsdl” and generate proxy classes in .NET or Java. For .NET you can use wsdl.exe tool. For Java you can use wsimport tool, or a Java IDE. For reference see Annex 6.7 WSDLs;
· Use the .NET example project packaged to understand the sequence of calling methods. For reference see Annex 6.5 Web Service Client example;
· Develop your own application to conform to NCTS_TRADER_WS.wsdl.

· Check produced messages with the xsd files. For reference see Annex 6.3 XSDs;
· Ask an authorization from MCA to test the application using the test environment on MCA. This test environment will be available on request and for limited time frames.

3.2.3. Description of available functions 

User should know that using web services in a System-To-System connection implies a Queue mechanism. For this reason, functions designed to upload data in MTA, first are placing the messages on a queue mechanism and then returning back some information to identify and correlate the information. (Usually a GUID is returned back first).
Functions used to download messages are taking data from another queue.
It is MTA responsibility to take data from queues, process it and put back the results on queue. MTA queue mechanism does NOT notify the clients about what was placed on output queue as the result of NCTS workflow processes.

It is the responsibility of the client application to check the queue status and identify if messages for him/her exists or not.

Even if MTA is generating automatically a message as a result of this function, the message itself is not returned back immediately. The user has to download it by calling one of web services methods designed to download messages, and specifying the GUID or MRN received. For example, after sending IE015, even if messages IE928 or IE028 are automatically generated, these messages should be requested explicitly. The user should make a pooling mechanism, which could download immediately the requested message.

Typical the process is:

· Client puts a message on queue (upload the message) and gets immediately back a GUID;
· Next, the client requests the message (or document) status by calling a function from category downloadmessagestatus. This could be a part of a loop; 
· Depending on the status received, the client will take the message answer from the queue (in the form of an XML content) using a function downloadmessageanswer.
The identification of messages is done by MRN and/or by GUID. 
Functions that are more general are available also on web service server. They do not request the client to know the type of message requested. These will give the last answer created by NCTS.

The functions mentioned here, as web service methods, do not have any business processing.

Messages (in XML format) uploaded are not checked against xsd, dtd schemas, or conditions and rules. They are stored as they are received. Only errors related to the impossibility to store data are returned back immediately. (Invalid user, Invalid GUID, invalid MRN, Database error). They are returned as and Oracle error code.

Next, MTA will process them and answer with a message on queue. If the input message is erroneous, MTA will build an error message (for example IE016). The client should request the status of a message and check if there are errors.

· FUNCTION1 : uploadsignedmessage

Usage

Uploads an XML signed message. 
The program calls it when user already has a signed XML message (the signature is inside XML). After calling the function, the user will obtain an GUID in the return value of the function, and this GUID should be stored for further reference to the message.

This function is usually called after a user had prepared all the data from a declaration, had signed it and then wants to send it to Customs.

Also this function is used when the user (trader) wants to send other messages to Customs like Amendments, Request for cancelation, Release request, Arrival notification, and Unloading remarks.
Steps
First, the user name is checked against users registration repository, next the signature is separated from the received message. Both unsigned and signed message are stored in database .The function acts like a queue mechanism. It places on a queue the received message, returns back the identifications of the message.
In Parameters

Parameters are presented as in wsdl, to allow a wide understanding in all programming languages able to call web services. Explanation of each parameter is as comment in wsdl (between <!—and -->).
<xsd:element name="uploadunsignedmessageElement">
        <xsd:complexType>
          <xsd:sequence>
            <xsd:element name="puserId" nillable="true" type="xsd:string" />
<!--puserID is the ID of the user, as defined when he user obtained an authorization to connect -->
            <xsd:element name="pmsgType" nillable="true" type="xsd:string" />



<!-- type of message (CC015B, CC028A, etc)-->
            <xsd:element name="pmsgContent" nillable="true" type="xsd:string" />



<!-- content of signed message (XML signed  message) -->
          </xsd:sequence>
        </xsd:complexType>

  </xsd:element>

For client application written in C#, all parameters are of type string
For client application written in Java all parameters are of type String
Out Parameters

Parameters are presented as in wsdl, to allow a wide understanding in all programming languages able to call web services. Explanation of each parameter is as comment in wsdl (between <!—and -->).
<xsd:complexType name="CDPS_TRADER_WSUser_uploadsignedmessage_Out">
        <xsd:sequence>
          <xsd:element name="pmsgstatusOut" nillable="true" type="xsd:string" />


   <!-- status of document (MRN_ALL, REL_TRA, etc)-->
          <xsd:element name="return" nillable="true" type="xsd:string" />


   <!---- the return value is the GUID of message uploaded-->
          <xsd:element name="prefidOut" nillable="true" type="xsd:string" />


  <!-- reference ID (LRN or MRN depending od mesage type) -->
          <xsd:element name="pmsgidOut" nillable="true" type="xsd:string" />


  <!---- returned msg_id (mesg_id from XML_CCxxx in NCTS -->
        </xsd:sequence>
      </xsd:complexType>

For client application written in C#, all parameters are of type string
For client application written in Java all parameters are of type String
Returned value
At the end of this procedure the generated GUID is returned.
For client application written in C#, return value is of type string
For client application written in Java return value is of type String
· FUNCTION2 :uploadunsignedmessage
Usage

Uploads an unsigned XML message. 
It is to be called by the program when user already has an XML unsigned message.  After calling the function, the user has a GUID in return value, and this GUID should be stored for further reference to the message.

This function is usually called after a user has all the data from a declaration, and wants to send to customs without a signature attached. Where the signature is to be used, depends on the type of authorization a user had obtained from Customs.
Also this function is used when the user (trader) wants to send other messages to Customs (like amendments, request for cancelation, release request, arrival notification, and unloading remarks).
This function exists and must be used only for testing purposes.
Steps
First, the user name is checked against users’ repository, and then the unsigned XML message is stored in database.

The function acts like a queue mechanism. It places on a queue the message, then return back the identification of the message.
In Parameters

Parameters are presented as in wsdl, to allow a wide understanding in all programming languages able to call web services. Explanation of each parameter is as comment in wsdl (between <!—and -->).
<xsd:element name="uploadunsignedmessageElement">
        <xsd:complexType>
          <xsd:sequence>
            <xsd:element name="puserId" nillable="true" type="xsd:string" />
<!--puserID is the ID of the user, as defined when he user obtaine an authorization to connect -->
            <xsd:element name="pmsgType" nillable="true" type="xsd:string" />



<!-- type of message (CC015B, CC028A, etc)-->
            <xsd:element name="pmsgContent" nillable="true" type="xsd:string" />



<!-- content of unsigned message (XML signed  message) -->
          </xsd:sequence>
        </xsd:complexType>

  </xsd:element>

For client application written in C#, all parameters are of type string
For client application written in Java all parameters are of type String
Out Parameters

Parameters are presented as in wsdl, to allow a wide understanding in all programming languages able to call web services. Explanation of each parameter is as comment in wsdl (between <!—and -->).
<xsd:complexType name="CDPS_TRADER_WSUser_uploadsignedmessage_Out">
        <xsd:sequence>
          <xsd:element name="pmsgstatusOut" nillable="true" type="xsd:string" />


   <!-- status of document (MRN_ALL, REL_TRA, etc)-->
          <xsd:element name="return" nillable="true" type="xsd:string" />


   <!---- the return value is the GUID of message uploaded-->
          <xsd:element name="prefidOut" nillable="true" type="xsd:string" />


  <!-- reference ID (LRN or MRN depending od mesage type) -->
          <xsd:element name="pmsgidOut" nillable="true" type="xsd:string" />


  <!---- returned msg_id (mesg_id from XML_CCxxx in NCTS -->
        </xsd:sequence>
      </xsd:complexType>

For client application written in C#, all parameters are of type string
For client application written in Java all parameters are of type String
Returned value
At the end of this procedure the generated GUID is returned

For client application written in C#, return value is of type string
For client application written in Java return value is of type String
Exceptions

No exception is thrown. If an error is detected on server, the return value is Oracle error code. If exceptions occur on communication or client side, they should be treated by client application.

· FUNCTION3 : downloadmessageanswer

Usage

The function downloads a message answer. This should be called after uploading a message, typically IE015 or IE013. User should know the type of the message and also the GUID used for correlation, typically the GUID of previously sent message in order to be able to use this function.

Because of uploading messages, an answer in the form of message is built by NCTS, for example IE028, or IE029. The user should know what kind of answer to expect as the communication acts as a queue mechanism. First the answer is searched. If the message exists, it is downloaded.
Steps
First the user name is checked against users DB, then the function searches for a message of the given type and GUID.

If such a message exists on NCTS out queue, the function place it in out parameter (pmsg_content). Also message id is placed in out parameter.

The return value is the GUID of the message.

The function acts like a queue mechanism. It return back the requested message.
In Parameters

Parameters are presented as in wsdl, to allow a wide understanding in all programming languages able to call web services. Explanation of each parameter is as comment in wsdl (between <!—and -->).
<xsd:element name="downloadmessageanswerElement">
        <xsd:complexType>
          <xsd:sequence>
            <xsd:element name="puserId" nillable="true" type="xsd:string" />
<!--puserID is the ID of the user, as defined when he user obtaine an authorization to connect -->
            <xsd:element name="pmsgType" nillable="true" type="xsd:string" />



<!-- type of message (CC015B, CC028A, etc)-->
            <xsd:element name="pcorrGuid" nillable="true" type="xsd:string" />
<!--the GUID alocated to this document by a previsously called function which uploads a message -->
          </xsd:sequence>
        </xsd:complexType>
      </xsd:element>

For client application written in C#, all parameters are of type string
For client application written in Java all parameters are of type String
Out Parameters

Parameters are presented as in wsdl, to allow a wide understanding in all programming languages able to call web services. Explanation of each parameter is as comment in wsdl (between <!—and -->).
<xsd:complexType name="CDPS_TRADER_WSUser_downloadmessageanswer_Out">
        <xsd:sequence>
          <xsd:element name="pmsgstatusOut" nillable="true" type="xsd:string" />


  <!-- status of document (MRN_ALL, REL_TRA, etc)-->
          <xsd:element name="pmsgcontentOut" nillable="true" type="xsd:string" />


   <!-- the XML answer content -->
          <xsd:element name="return" nillable="true" type="xsd:string" />


  <!--the return value is the GUID of message sent back -->
          <xsd:element name="prefidOut" nillable="true" type="xsd:string" />


  <!-- Reference number of mesage (MRN)-->
          <xsd:element name="pmsgidOut" nillable="true" type="xsd:string" />
<!-- an internal number generated by NCTS. It is used for further reference -->
        </xsd:sequence>
      </xsd:complexType>

For client application written in C#, all parameters are of type string
For client application written in Java all parameters are of type String
Returned value
At the end of this procedure the generated GUID is returned. The content of message is placed in pmsgcontentOut  of output structure returned back.
For client application written in C#, return value is of type string
For client application written in Java return value is of type String
Exceptions

No exception is thrown. If an error is detected on server, the return value is Oracle error code. If exceptions occur on communication or client side, they should be treated by client application.

· FUNCTION4 : downloadmessagebymrn

Usage

The function downloads a message answer. This should be called after uploading a message, typically IE015 or IE013. User should know the MRN in order to call this function.
User should know the type of the message and also the MRN used for correlation. 

As a result of uploading messages, an answer in the form of message is built by NCTS, for example IE028, or IE029. The user should know what kind of answer to expect as the communication acts as a queue mechanism. First, the answer is searched. If the message exists, it is downloaded.
Steps
First user is checked if it exists in users repository, it searches for a message of the given type and MRN.
If such a message exists on NCTS out queue, the function place it in out parameter pmsg_content. Also message id and message status are placed in out parameter.

The return value is the GUID of the message.

The function acts like a queue mechanism. It returns the requested message.
In Parameters

Parameters are presented as in wsdl, to allow a wide understanding in all programming languages able to call web services. Explanation of each parameter is as comment in wsdl (between <!—and -->).
<xsd:element name="downloadmessagebymrnElement">
        <xsd:complexType>
          <xsd:sequence>
            <xsd:element name="puserId" nillable="true" type="xsd:string" />
<!--puserID is the ID of the user, as defined when he user obtaine an authorization to connect -->
            <xsd:element name="pmsgType" nillable="true" type="xsd:string" />



<!-- type of message (CC015B, CC028A, etc)-->
            <xsd:element name="pmrn" nillable="true" type="xsd:string" />



<!-- MRN of document -->
          </xsd:sequence>
        </xsd:complexType>
      </xsd:element>

For client application written in C#, all parameters are of type string
For client application written in Java all parameters are of type String
Out Parameters

Parameters are presented as in wsdl, to allow a wide understanding in all programming languages able to call web services. Explanation of each parameter is as comment in wsdl (between <!—and -->).
<xsd:complexType name="CDPS_TRADER_WSUser_downloadmessagebymrn_Out">
        <xsd:sequence>
          <xsd:element name="pmsgstatusOut" nillable="true" type="xsd:string" />


   <!-- status of document (MRN_ALL, REL_TRA, etc)-->
          <xsd:element name="pmsgcontentOut" nillable="true" type="xsd:string" />


   <!-- the XML answer content -->
          <xsd:element name="return" nillable="true" type="xsd:string" />


  <!---- the return value is the GUID of message sent back-->
          <xsd:element name="prefidOut" nillable="true" type="xsd:string" />


   <!-- Refernec number of mesage (MRN)-->
          <xsd:element name="pmsgidOut" nillable="true" type="xsd:string" />


  <!-- an internal number generated by NCTS. It is used for further reference -->
        </xsd:sequence>
      </xsd:complexType>

For client application written in C#, all parameters are of type string
For client application written in Java all parameters are of type String
Returned value
At the end of this procedure the generated GUID is returned. The content of message is placed in pmsgcontentOut  of output structure returned back.
For client application written in C#, return value is of type string
For client application written in Java return value is of type String.
Exceptions

No exception is thrown. If an error is detected on server, the return value is Oracle error code. If exceptions occur on communication or client side, they should be treated by client application.

· FUNCTION5 : downloadmessagestatus 

Usage

The function downloads a message status. This should be called when the user wants to know the status of a document being processed. User should know the type of message for which status is searched.

Status is searched on NCTS EDI queue and is returned back in an out parameter. As return value, the guid is returned back (as a validation that the message was found). 
Steps
First user is checked against users repository, then the function searches for a message of the given type and GUID.

If such a message exists on MTA out queue, the function places it in out parameter pmsgstatusOut content.
The return value is the GUID of the message.

In Parameters

Parameters are presented as in wsdl, to allow a wide understanding in all programming languages able to call web services. Explanation of each parameter is as comment in wsdl (between <!—and -->).
<xsd:element name="downloadmessagestatusElement">
        <xsd:complexType>
          <xsd:sequence>
            <xsd:element name="puserId" nillable="true" type="xsd:string" />



<!--puserID is the ID of the user, as defined when he user obtaine an authorization to connect -->
            <xsd:element name="pmsgType" nillable="true" type="xsd:string" />



<!-- type of message (CC015B, CC028A, etc)-->
            <xsd:element name="pcorrGuid" nillable="true" type="xsd:string" />



<!--the GUID alocated to this document by a previsously called function which uploads a message -->
          </xsd:sequence>
        </xsd:complexType>
      </xsd:element>

For client application written in C#, all parameters are of type string
For client application written in Java all parameters are of type String
Out Parameters

Parameters are presented as in wsdl, to allow a wide understanding in all programming languages able to call web services. Explanation of each parameter is as comment in wsdl (between <!—and -->).
<xsd:complexType name="CDPS_TRADER_WSUser_downloadmessagestatus_Out">
        <xsd:sequence>
          <xsd:element name="pmsgstatusOut" nillable="true" type="xsd:string" />


  <!-- status of document (MRN_ALL, REL_TRA, etc)-->
          <xsd:element name="return" nillable="true" type="xsd:string" />


  <!---- the return value is the GUID of message sent back-->
          <xsd:element name="prefidOut" nillable="true" type="xsd:string" />


  <!-- Refernec number of mesage (MRN)-->
          <xsd:element name="pmsgidOut" nillable="true" type="xsd:string" />
<!-- an internal number generated by NCTS. It is used for further reference -->
        </xsd:sequence>
      </xsd:complexType>

For client application written in C#, all parameters are of type string
For client application written in Java all parameters are of type String
Returned value
At the end of this procedure the correlation GUID is returned. The status of message is placed in pmsgstatusOut of output structure returned back.
For client application written in C#, return value is of type string
For client application written in Java return value is of type String
Exceptions

No exception is thrown. If an error is detected on server, the return value is Oracle error code. If exceptions occur on communication or client side, they should be treated by client application.

· FUNCTION6 : downloadmessagestatusbymrn

Usage

The function downloads a message status when the user knows the MRN and the type of message. It should be called when the user wants to know the status of a document being processed. Status is searched on NCTS EDI queue and is returned back in an out parameter. As return value, the guid is returned back (as a validation that the message was found). Both messages uploaded by client application and messages created by MTA as an answer could be searched for status with this function.

User should know the type of the message and also the MRN used in order to call this function.
Steps
First user is checked against users repository, then it searches for a message of the given type and MRN.

If such a message exists on MTA out queue, the function place it in out parameter pmsgstatusOut. 

The return value is the GUID of the message.

In Parameters

Parameters are presented as in wsdl, to allow a wide understanding in all programming languages able to call web services. Explanation of each parameter is as comment in wsdl (between <!—and -->).
<xsd:element name="downloadmessagestatusbymrnElement">
        <xsd:complexType>
          <xsd:sequence>
            <xsd:element name="puserId" nillable="true" type="xsd:string" />
<!--puserID is the ID of the user, as defined when he user obtaine an authorization to connect -->
            <xsd:element name="pmsgType" nillable="true" type="xsd:string" />



<!-- type of message (CC015B, CC028A, etc)-->
            <xsd:element name="pmrn" nillable="true" type="xsd:string" />



<!-- MRN of document -->
          </xsd:sequence>
        </xsd:complexType>
      </xsd:element>

For client application written in C#, all parameters are of type string
For client application written in Java all parameters are of type String
Out Parameters

Parameters are presented as in wsdl, to allow a wide understanding in all programming languages able to call web services. Explanation of each parameter is as comment in wsdl (between <!—and -->).
<xsd:complexType name="CDPS_TRADER_WSUser_downloadmessagestatusbymrn_Out">
        <xsd:sequence>
          <xsd:element name="pmsgstatusOut" nillable="true" type="xsd:string" />


  <!-- status of document (MRN_ALL, REL_TRA, etc)-->
          <xsd:element name="return" nillable="true" type="xsd:string" />


  <!---- the return value is the GUID of message sent back-->
          <xsd:element name="prefidOut" nillable="true" type="xsd:string" />


  <!-- Refernec number of mesage (MRN)-->
          <xsd:element name="pmsgidOut" nillable="true" type="xsd:string" />
<!-- an internal number generated by NCTS. It is used for further reference -->
        </xsd:sequence>
      </xsd:complexType>

For client application written in C#, all parameters are of type string
For client application written in Java all parameters are of type String
Returned value
At the end of this procedure the correlation  GUID is returned. The status of message is placed in pmsgstatusOut of output structure returned back.
For client application written in C#, return value is of type string
For client application written in Java return value is of type String
Exceptions

No exception is thrown. If an error is detected on server, the return value is Oracle error code. If exceptions occur on communication or client side, they should be treated by client application.
· FUNCTION7 : downloaddocumenttatusbymrn

Usage

The function downloads a message status when the user knows the MRN. No message type is necessary. The status is read from the history of the document with the given MRN. It is the status of last message (or last processing) on a document.

As return value the document status is sent. 
Steps
First user is checked against users repository, then the function searches for a message having the given MRN. From the history of processing, returns back the last found status.
If such a message exists on MTA out queue, the function place it in out parameter pmsgstatusOut. 

The return value is the status of the message.

In Parameters

Parameters are presented as in wsdl, to allow a wide understanding in all programming languages able to call web services. Explanation of each parameter is as comment in wsdl (between <!—and -->).
<xsd:element name="downloaddocumenttatusbymrnElement">
        <xsd:complexType>
          <xsd:sequence>
            <xsd:element name="puserId" nillable="true" type="xsd:string" /> 
<!--puserID is the ID of the user, as defined when he user obtaine an authorization to connect -->
            <xsd:element name="pmrn" nillable="true" type="xsd:string" />



<!-- MRN of document -->
          </xsd:sequence>
        </xsd:complexType>
      </xsd:element>

For client application written in C#, all parameters are of type string
For client application written in Java all parameters are of type String
Out Parameters

Parameters are presented as in wsdl, to allow a wide understanding in all programming languages able to call web services. Explanation of each parameter is as comment in wsdl (between <!—and -->).
<xsd:complexType name="CDPS_TRADER_WSUser_downloaddocumenttatusbymrn_Out">
        <xsd:sequence>
          <xsd:element name="pmsgstatusOut" nillable="true" type="xsd:string" />


  <!-- document status like MRN_ALL, REL_TRA, etc. -->
          <xsd:element name="return" nillable="true" type="xsd:string" />


   <!-- document status like MRN_ALL, REL_TRA, etc. (same as previous) -->
          <xsd:element name="prefidOut" nillable="true" type="xsd:string" />


  <!-- Reference number of document (LRN) -->
          <xsd:element name="pmsgidOut" nillable="true" type="xsd:string" />
<!-- an internal number generated by NCTS. It is used for further reference -->
        </xsd:sequence>
      </xsd:complexType>

For client application written in C#, all parameters are of type string
For client application written in Java all parameters are of type String
Returned value
At the end of this procedure status returned. The status of message is also placed in pmsgstatusOut of output structure returned back.
For client application written in C#, return value is of type string
For client application written in Java return value is of type String
Exceptions

No exception is thrown. If an error is detected on server, the return value is Oracle error code. If exceptions occur on communication or client side, they should be treated by client application.

· FUNCTION8 : downloadlastdocanswer 

Usage

The function downloads a message answer. This should be called after uploading a message, typically IE015 or IE013. User should know the GUID of first message sent in order to call this function. The type is not necessary.

The function searches the last status of document for which, the first message created is identified by the given GUID.

As a result of uploading messages, an answer in the form of message is built by NCTS, for example IE028, or IE029. The user should know what kind of answer to expect as the communication acts as a queue mechanism. First the answer is searched. If the message exists, it is downloaded.
Steps
First, the user is checked against users repository, then the function searches for a message of the given type and MRN.
If such a message exists on MTA out queue, the function place it in out parameter pmsg_content. Also message id and message status are placed in out parameter.

The return value is the GUID of the message.

The function acts like a queue mechanism. It returns the requested message.
In Parameters

Parameters are presented as in wsdl, to allow a wide understanding in all programming languages able to call web services. Explanation of each parameter is as comment in wsdl (between <!—and -->).
<xsd:element name="downloadlastdocanswerElement">
        <xsd:complexType>
          <xsd:sequence>
            <xsd:element name="puserId" nillable="true" type="xsd:string" />
<!--puserID is the ID of the user, as defined when he user obtaine an authorization to connect -->
            <xsd:element name="pcorrGuid" nillable="true" type="xsd:string" />
<!--the GUID alocated to this document by a previsously called function which uploads a message -->
          </xsd:sequence>
        </xsd:complexType>
      </xsd:element>

For client application written in C#, all parameters are of type string
For client application written in Java all parameters are of type String
Out Parameters

Parameters are presented as in wsdl, to allow a wide understanding in all programming languages able to call web services. Explanation of each parameter is as comment in wsdl (between <!—and -->).
<xsd:complexType name="CDPS_TRADER_WSUser_downloadlastdocanswer_Out">
        <xsd:sequence>
          <xsd:element name="pmsgtypeOut" nillable="true" type="xsd:string" />


  <!-- type of message (CC015B, CC028A, etc)-->
          <xsd:element name="pmsgstatusOut" nillable="true" type="xsd:string" />


  <!-- status of document (MRN_ALL, REL_TRA, etc)-->
          <xsd:element name="pmsgcontentOut" nillable="true" type="xsd:string" />


  <!-- the XML answer content -->
          <xsd:element name="return" nillable="true" type="xsd:string" />


  <!-- return value (id of message last sent) -->
          <xsd:element name="prefidOut" nillable="true" type="xsd:string" />


  <!-- refernce number (LRN) -->
          <xsd:element name="pmsgidOut" nillable="true" type="xsd:string" />
<!-- an internal number generated by NCTS. It is used for further reference -->
        </xsd:sequence>
      </xsd:complexType>

For client application written in C#, all parameters are of type string
For client application written in Java all parameters are of type String
Returned value
At the end of this procedure the generated GUID is returned. The content of message is placed in pmsgcontentOut  of output structure returned back.
For client application written in C#, return value is of type string
For client application written in Java return value is of type String
Exceptions

No exception is thrown. If an error is detected on server, the return value is Oracle error code. If exceptions occur on communication or client side, they should be treated by client application.
Digital signature

The validation of the signed messages is done using a certificate stored for the user, when the user obtained the right to use IT system (system to system connection)

When the user is authorized to use system to system connection, the way of working (digitally signing or not), is specified for the user.

If a user has to sign documents, then the certificate (public key) is registered into the MTA system as user data, and is used to check the documents sent.

4. ECONOMIC OPERATORS REGISTRATION

The trader must have a registration at the Customs in order to submit NCTS related data.

 The following data for a complete registration must be provided:

· the VAT number of the company ;

· the Public key of e-signature ;

· list of  authorized Representatives.

· The name and the version of application used for system to system connection

· Contact points (email, phone)

If the trader wants to use system-to-system connection, he may request a testing session, for his application. This testing, done in direct connection with MCA system, will check the validity of messages sent against NCTS xsd, dtd, conditions and rules.

As a result of registration, the trader will receive a certificate which will allow him to use MTA system. The certificate will contain all data (IP address, protocols, restrictions, credentials, etc) necessary for systems connection.
5. ABBREVIATIONS AND ACRONYMS

Abbreviation
Description

	DDNTA
	Design Document for National Transit Application

	FTSS
	Functional Transit System Specification

	GUID
	Globally Unique Identifier

	MCA
	Macedonian Custom Administration

	MTA
	Macedonian Transit Application

	NR
	National Requirements

	NCTS
	New Computerised Transit System

	TSMTA
	Traders Specification of Macedonian Transit Application

	XML
	Extensible Mark-up Language

	WSDL
	Web Service Definition Language

	MRN
	Movement Reference Number

	LRN
	Local Reference Number

	XSD
	Extensible Schema Definition

	DTD
	Document Type Definition

	VAT
	Value Added Tax

	CT
	Common Transit

	EDI
	Electronic Data Exchange

	JEE
	Java Enterprise Edition

	C#
	C Sharp


Table 1: Abbreviations and acronyms
6. Annex
6.1. International Rules, Conditions and Technical Rules
DDNTA P4-v15.50_APP Q2.pdf
6.2. National Rules 

1. R001MK: The data item 'Total Number of items' on Header Level must be equal to the total number of items on Goods Level.
2. R002MK: In the group "GOODS ITEM", if the field “Gross mass” is declared, and the field “Net mass” is used, the value of the field must not be greater than the value of the field “Gross mass”.
3. R003MK: GRN cannot be used more than once in a declaration.

4. R004MK: The total sum of the calculated taxes for total document must be mentioned only in the first item.

The data group “S-pecial mentions” will be used for these purposes. The format of the data which will be used will be provided by MCA in document - MK Reference data.
For foreign guarantee this data is mandatory. For MK guarantee, if the data is not present, the system will insert the data for default amount from Guarantee module.

SPECIAL MENTIONS:

· additional information code = CAL;

· additional information text = GUARANTEE AMOUNT/CURRENCY/GRN;
5. R005MK: LRN should be in the format an22 and should be unique per trader and per year. 

The structure of the LRN should be built in the following way:

YYWWWWWWWWWWWWWNNNNNNN   

Where  

YY – Last two digits for the year

WWWWWWWWWWWWW- 13  digits for the TIN number for the economic operators

NNNNNNN  7 digits (unique number generated by the economic operator’s system). When the number contains less than 7 digits, it should be completed by adding appropriate numbers of “0” in front of the left side.

For Carnet ТIR the structure should be build in the following way:

YYXXXXXXXXXXTZZNNNNNNN – 22 characters

YY – Last two digits for the year

XXXXXXXXXX -10 digits for the TIR Carnet number

T – symbol for TIR carnet

ZZ - number of the page of the carnet at the moment of the stating of the operation (e.g.02, 04, 06, 10….)

NNNNNNN - digits (unique number generated by the economic operator’s system). When the number contains less than 7 digits, it should be completed by adding appropriate number of “0” in front of the left side.

In the case of cancellation, not released for transit and rejection of the transit declaration the system must allow reusing of the LRN.

In the case DTI is used and the economic operator doesn’t input information about LRN, the system should generate the LRN automatically in the described format.

6. R006MK: Default time limit which will appear on the screen on release of an MRN in the OoDep in National Transit should be 1 (one) day, with possibility to be changed by customs officer to max 3 days. In Common Transit procedure time limit should be 7 days with the possibility to be changed by customs officer to max 15 days. 

7. R007MK: User name and password should be unique. The system must not allow more than one connection per user per customs office role in the same time. The user must be able to open on one computer several office roles.

8.  R008MK :  The only data which can be changed via IE013 message are the following :

 

Inland transport mode 

Transport mode at  border 

Identity of means of transport at departure (exp/trans) 

Identity of means of transport at departure LNG

Nationality of means of transport at departure 

Identity of means of transport crossing border

Identity of means of transport crossing border LNG 

Nationality of means of transport crossing border 

Type of means of transport crossing border 

PRODUCED DOCUMENTS/CERTIFICATES 

 

	Document type

	Document reference

	Document reference LNG

	Complement of information

	Complement of information LNG


Data for the guarantee can be changed only after receiving the message IE055 and the status of the declaration must be Guarantee under amendment. In that case only data for guarantee can be changed. 
In all other cases the principal should send request for cancellation of the declaration  (message IE014).

9. R009MK :  Traders mentioned in IE015 (consignor – consignee – carrier – principal) at the OoDep and presenter of the goods at the OoDes  – in case they are established in Macedonia,  then TIN (Trader Identification Number) is mandatory. 

If the first two letters of TIN are MK and the third digit is equal or bigger than 4 (four) the TIN should be known by customs (traders’ registration module). 

In case of Macedonian physical person, the unique registration number for the person shall be used, but this number at the moment will not be controlled by the system.
For presenter in OoDes it must be possible to register foreign traders with or without TIN/EORI.
10. R010MK :  Codes for national Previous administrative documents type,  national formats/templates for Previous documents reference, national format/template for Previous documents complement of information, national codes for Produced documents/certificates type, national format/template for Produced documents/certificates reference, national format/template for Produced documents/certificates complement of information, national codes for Special mentions – additional information and use national format/template for Special mentions – text of additional information will be provided in document – MK Reference data. 

11. R011MK: For loading place in IE015 and for declaration place and in all fields where a MK city name has to be given, use of postal codes drop-down list (customs officer will see the name of the city on the screen).
12. R012MK: In case for an MRN a negative message has been received from the Office of Guarantee the Trader will have 3 (three) hours for modification of a guarantee.
13. R013MK: Commodity code contains from 4 and up to 10 digits.
6.3. XSDs

MTA_MK_XSD_1.0.rar
6.4. Business Process Description

DDNTA P4-v15.50-EN.doc
6.5. Web Service Client example
MTA_TRADER_WS_LOCAL_V1.0.doc
6.6. Messages description

MTA_EXT_DOMAIN_MK_MESSAGES_DOC_V1.0.xls
6.7. WSDLs

NCTS_TRADER_WS - Explained.wsdl.xml
NCTS_TRADER_WS.wsdl
	
	Version 1.0
	Page 3 of 24



[image: image1.png]